НАО «Западно-Казахстанский медицинский университет имени МаратаОспанова»

АННОТАЦИЯ ДИССЕРТАЦИОННОЙ РАБОТЫ НА СОИСКАНИЕ СТЕПЕНИ ДОКТОРА ФИЛОСОФИИ (PhD)

Полиморфизм гена TLR3 в предрасположенности к хроническим вирусным гепатитам в казахской популяции

Специальность D141 - «Медицина»

Нурланова Гулжанат Нурлановна

Научные консультант к.м.н., профессор Жумагалиева Г.Д. Зарубежный научный консультант д.м.н., профессор Козлов И.Г.

РеспубликаКазахстан Актобе, 2024

Актуальность исследования. ВВЕДЕНИЕ

Вирусные гепатиты находятся на седьмом месте среди основных причин смертности от различных заболеваний. По последним оценкам, около 7% населения планеты являются хроническими носителями вируса гепатита В, гепатит С затрагивает около 3% мирового населения, что в количественном выражении составляет около 185 миллионов человек. В 2009 году в Казахстане был зафиксирован наивысший уровень заболеваемости вирусными гепатитами, при этом ВГС достигло более 2% (0,83 на 100 тысяч населения), а ВГВ – около 9% (3,21 на 100 тысяч населения).

Особую тревогу вызывает риск развития тяжелых последствий, как цирроз печени и гепатоцеллюлярная карцинома. Вирусные циррозы печени, возникающие на фоне хронических гепатитов В, С и В+D, занимают значительную долю среди всех случаев ЦП. В США вирусный гепатит С стал главной причиной ЦП, составляя 26% случаев. В России же, среди циррозов печени, не связанных с алкоголем, вирусные гепатиты В и С составляют 73,3%, из которых на долю гепатита С приходится 58,2%

Врожденная иммунная система, служащая этой первой линией защиты, имеет жизненно важное значение для распознавания и нейтрализации патогенов. Однако задержка в её способности распознавать заражающие микроорганизмы может привести к серьезным последствиям, включая дисфункцию органов, неадекватные системные реакции, разрушительное повреждение тканей, жизнеугрожающие инфекции и даже смерть. Именно поэтому понимание генетических механизмов, лежащих в основе врожденного иммунитета, стало возможным благодаря завершению глобального проекта по расшифровке генома человека в начале XXI века (Organization 2017), открыв перед наукой новые горизонты в изучении взаимосвязи между нуклеотидными полиморфизмами и заболеваниями.

Полиморфизм в генов SNP, играет значительную роль в популяционной генетике, объясняя различия в восприимчивости к инфекциям среди разных этнических и расовых групп. Так, однонуклеотидные полиморфизмы в генах, связанных с врожденной устойчивостью к инфекционным заболеваниям, могут служить маркерами для определения предрасположенности или устойчивости к определенным инфекциям, открывая новые перспективы для разработки индивидуализированных подходов в лечении и профилактике инфекционных заболеваний.

Взаимодействие человека и вируса происходит посредством рецепторов макроорганизма, включая Toll-подобные рецепторы, играющих фундаментальную роль в идентификации патогенов и активации иммунной системы, становясь важным звеном как врожденных, так и адаптивных иммунных ответов. TLR3, играя ведущую роль в противовирусном иммунном ответе и распознавая двухцепочечную РНК вирусов, также занимает центральное место в патофизиологии заболеваний печени. Внутриклеточный TLR3 распознает вирусную двухцепочечную РНК (дсРНК) и активирует противовирусные иммунные реакции через выработку интерферона 1 и воспалительных цитокинов.

Эта способность TLR3 подчеркивает важность дальнейших исследований в области разработки новых методов лечения вирусных инфекций и связанных с ними заболеваний, открывая новые перспективы для использования агонистов TLR в терапии. SNP, встречающиеся у более чем 1% населения, могут влиять на активность промотора гена и вызывать аминокислотные превращения, касательно чего исследования показали, что пациенты с хронической инфекцией HCV с определенными генотипами Toll-подобного рецептора 3 (TLR3) имеют значительно более высокие уровни экспрессии по сравнению с здоровыми людьми.

Цель исследования: Изучение полиморфизма генов TLR3 (rs5743305, rs5743312, rs1879026, rs3775291) в предрасположенности к хроническим вирусным гепатитам В и С в казахской популяции, их ассоциации в клинико-лабораторном течении заболевания, эффективности противовирусной терапии и прогнозирования уменьшения степени фиброза.

Задачи исследования:

- 1. Провести анализ распределения частот генотипов гена TLR3 rs5743305, rs 5743312, rs1879026, rs3775291, ассоциированных с хроническими вирусными гепатитами В и С в казахской популяции;
- 2. Изучить полиморфизмы генов TLR3 TLR3 rs5743305, rs 5743312, rs1879026, rs3775291 в сопоставлении с клинико-лабораторными показателями при хронических вирусных гепатитах В и С в казахской популяции.
- 3. Оценить вклад полиморфизмов генов TLR3 в исходе ПВТ XВГ В и С в прогнозировании уменьшения степени фиброза в казахской популяции

Научная новизна

- 1. Впервые проведен анализ распределения частот генотипов генов TLR3 rs5743305, rs5743312, rs1879026, rs3775291, ассоциированных с хроническими вирусными гепатитами В и С в казахской этнической группе. Возможным маркером, ассоциированным с развитием XBГ С у казахов, является наличие генотипа TT полиморфизма rs5743312 гена TLR3.
- 2. Впервые определены полиморфизмы генов TLR3 rs5743305, rs 5743312, rs1879026, rs3775291 в сопоставлении с клинико-лабораторными показателями при хронических вирусных гепатитах В и С в казахской этнической группе. При ХВГ В регресс печёночных симптомов выявлен при наличии генотипа СТ/ТТ, астеновегетативных генотипа СС rs5743312 гена TLR3 и генотипа СТ/ТТ rs3775291 гена TLR3; при ХВГ С генотипе CA/AA rs1879026 гена TLR3.
- 3. Впервые при ХВГ В выявлен вклад генотипа ТТ полиморфизма TLR3 rs3775291, генотипа СТ TLR3 rs1879026 и генотипа ТТ TLR3rs5743312; при ХВГ С генотипа ТТ TLR3 rs3775291, генотипа СТ/ТТ TLR3 rs5743312, генотипа СС и ТТ TLR3 rs5743305 в уменьшении степени фиброза в исходе противовирусной терапии в казахской этнической группе;
- 4. Основываясь на результатах генотипирования, разработано дерево классификации пациентов с ХВГ: при гепатите В наибольший регресс степени фиброза отмечался при генотипе ТТ полиморфизма TLR3 rs3775291, наименьший СС TLR3 rs5743305; при гепатите С наибольший генотипе ТТ TLR3 rs3775291,

наименьший - генотипе TA TLR3 rs5743305. Это служит для прогнозирования уменьшения степени фиброза с целью персонализированного подхода терапии.

Теоретическая и практическая значимость

Выявленные распределения частот генотипов генов TLR3 rs5743305, rs 5743312, rs1879026, rs3775291, ассоциированных с XBГ В и С в казахской этнической группе, дополняют сведения об особенностях генетического аспекта заболевания и помогут прогнозировать течение болезни у конкретного пациента;

Проведение генетического тестирования на полиморфизмы генов TLR3 rs5743305, rs5743312, rs1879026, rs3775291 у пациентов с XBГ В и С в казахской этнической группе перед началом лечения позволит идентифицировать пациентов с повышенным риском развития фиброза печени и адаптировать стратегию лечения и мониторинга в соответствии с их генетическим профилем;

Интеграция результатов генотипирования TLR3 rs5743305, rs5743312, rs1879026, rs3775291 в казахской этнической группе в клиническую практику клинической фармакологии, гастроэнтерологии, инфекционных болезней будут способствовать развитию персонализированного мониторинга и управления течением XBГ В и С с учетом индивидуального риска осложнений.

Положения, выносимые на защиту

Установлено, что генотип ТТ полиморфизма rs5743312 гена TLR3 может служить маркером, ассоциированным с развитием ХВГ С в казахской этнической группе.

При ХВГ В регресс печёночного симптома отмечен при наличии генотипа СТ/ТТ TLR3 rs5743312 и генотипа СТ/ТТ TLR3 rs3775291, а астено-вегетативного синдрома — при генотипе СС TLR3 rs5743312. При ХВГ С аналогичный регресс был ассоциирован с генотипом СА/АА TLR3 rs1879026. У пациентов с ХВГ С с генотипами СА/АА полиморфизма rs1879026 гена TLR3 отмечалось улучшение биохимических показателей.

При гепатите В наибольший регресс степени фиброза отмечался при генотипе TT TLR3 rs3775291, наименьший — при генотипе CC TLR3 rs5743305. При гепатите C наибольший регресс был при генотипе TT TLR3 rs3775291, наименьший — при генотипе TA TLR3 rs5743305.

Апробация работы. Результаты проведенного исследования представлены на:

- 1. "Abstracts of The IX Annual International Scientific-Practical Conference; Medicine Pressing Questions" May 06 08, 2020, Baku, Azerbaijan. «Опыт лечения хронических вирусных гепатитов в Актюбинской области» Нурланова Γ. H. ISBN: 978-81-942709-5-9; DOI: 10.21467/abstracts.97
- 2. XXIV Международной медико-биологической конференции молодых исследователей «Фундаментальная наука и клиническая медицина человек и его здоровье» 24 апреля 2021 года Санкт-Петербургский государственный университет. Тезис Тема: Анемия пациентов с хроническим вирусным гепатитом С, получающих комбинированную противовирусную терапию. ISBN 978-5-6045762-2-9

- 3. IV Международной научно-практической конференции «Инфекционные болезни на современном этапе: проблемы и пути решения» 19 апреля 2024 года, г. Уфа Тема: Роль полиморфизма гена TLR3 при хроническом вирусном гепатите С.
- 4. III Международной научно-практической конференции «Актуальные инфекции Республики Казахстан и Центральной Азии в условиях чрезвычайных ситуациях» 20-21 июня 2024 года Казахстан, г.Туркестан. Тема: Полиморфизм гена TLR3 в предрасположенности к хроническим вирусным гепатитам.

Публикации по теме диссертации. По теме диссертации опубликовано 5 научных печатных работ, из них 1 статья - в издании индексированном в информационной базе Scopus — «Asian pacific journal ofcancer prevention » (36 процентиль в 2023 г); 2 статья — «Research Journal Pharmacy and Technology» (50 процентиль в 2024г); 4 статьи - в изданиях, рекомендованных Комитетом по контролю в сфере образования и науки РК; 3 тезиса — в сборниках международных конференций (в том числе зарубежных — 3).

Диссертационное исследование проведено в рамках финансируемых научных проектов: НТП «Генетические факторы предрасположенности к вирусным инфекционным гепатитам в казахской популяции Западного Казахстана и цитокиновый профиль больных в процессе противовирусной терапии», финансируемого ЗКМУ им. Марата Оспанова.

Личный вклад автора

В рамках настоящего исследования автором были разработаны цель и задачи для всестороннего анализа исследуемой проблемы. Лично осуществлен сбор материала и интерпретация данных. Существенный личный вклад был внесен в процесс статистической обработки результатов, благодаря чему удалось достичь объективности и надежности выводов. Также были сформулированы научно обоснованные выводы и разработаны практические рекомендации, что способствует дальнейшему развитию научного поля исследования. Анализ полученных данных, интерпретации и обобщения результатов в виде публикаций, что вносит значимый вклад в теоретическую и практическую значимость проведенного исследования.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Работа была проведена на кафедре инфекционных болезней и детских инфекций НАО «Западно-Казахстанского медицинского университета имени Марата Оспанова». Клинико-лабораторные обследования больных проводились в гепатологических Центрах г.Актобе и Атырау. Генетическая часть работы выполнялась на базе научно-исследовательского центра ЗКМУ имени Марата Оспанова города Актобе, улица Маресьева, 74.

В исследование были включены все пациенты, находившиеся на амбулаторном лечении в гепатологических центрах городов Актобе и Атырау с верифицированным диагнозом «Хронический вирусный гепатит В и С» при условии подписания ими информированного согласия. Ограничений для включения в исследование по полу не было. Целевого равного участия мужчин и женщин не было. В исследование включали людей в возрасте от 18 до 60 лет. Диагноз был верифицирован в гепатологических центрах и зафиксирован в картах

индивидуального учета обследованных и больных (формы №30–1/). Потенциальным кандидатам предлагалось участвовать в исследовании, далее, после проверки соответствия критериям включения и исключения, подписывалось информированное согласие (ИС) на участие в исследовании.

Критерии включения больных в исследование

Критерии включения: пациенты в возрасте от 18 до 60 лет с подтвержденным диагнозом «Хронический вирусный гепатит ХВГ В или С» без сопутствующей патологии с принадлежностью к этническим казахам и получавших противовирусное лечение в соответствии с клиническими протоколами (ХВГ В – тенофовир, ХВГ С-даклатасвир+софосбувир).

Принадлежность к казахской национальности устанавливали путем анкетирования и сверки с данными свидетельства о рождении и удостоверения личности респондента в трех поколениях. Этот опросник представлял собой анкету для сбора демографической информации о пациенте и его родословной до третьего поколения, включая национальность и место рождения как самого пациента, так и его родителей, бабушек, дедушек, прабабушек и прадедушек.

Критерии исключения больных из исследования

- пациенты с ХВГ В, С, D беременные, кормящие матери;
- пациенты с XBГ B, C, D, состоящие на диспансерном учете туберкулезном, психоневрологическом, наркологическом диспансерах, СПИД-центре;
- пациенты с XBГ B, C, D с хроническими декомпенсированными заболеваниями внутренних органов, за исключением цирроза печени, ГЦК;
- Из исследование исключали лиц, имеющих в трех поколениях, а также родственников, известных им кровную связь с представителями не казахской национальности

В гепатологических центрах после получения ИС с пациентами проводились: сбор информации, оценка состояния пациентов, заполнение участниками опросников (по национальности, принадлежность к этническим казахам, приложение A, Б). Результаты клинических, лабораторных и инструментальных исследований, информация о проведенном лечении и рекомендациях были выписаны из медицинских карт пациентов (формы Neq 30-1/).

2.1Методология исследования для первой задачи

Изучение распределения частот генотипов генов TLR3 rs5743305, rs5743312, rs1879026, rs3775291.

Дизайн данного исследования – случай контроль.

Для проведения данной задачи были отобраны пациенты казахской национальности с диагнозом «Хронические вирусные гепатиты В и С», состоящие на диспансерном учете в гепатологических центрах городов Актобе и Атырау.

Больные казахской национальности с диагнозом хронический вирусный гепатит В и С состояли на учете в гепатологических центрах Актюбинской и Атырауской областей с установленным и подтвержденным диагнозом. Обследование с верификацией возбудителя и лечение проводилось в соответствии с клиническими протоколами.

Применялась сплошная последовательная выборка. Согласно литературным данным, распространенность хронического вирусного гепатита В составляет 7%, а хронического вирусного гепатита С – 14,7%. На основе этих данных планировалось включить в исследование 120 пациентов с хроническим вирусным гепатитом В и 232 пациента с хроническим вирусным гепатитом С.

За отведенный период времени с 01.03.2020 года по 31.08.2021 года в гепатологических центрах проводили противовирусное лечение 187 пациентов и диагнозом хронический вирусный гепатит В (тенофовир) и С (даклатасвир+софосбувир) (Атырау 86, Актобе 101).

Из них 16 человек отказались от участия в исследовании, 10 человек не вошли в исследование по критериям исключения. Таким образом, в исследование было включено 59 пациентов с хроническим вирусным гепатитом В и 102 пациента с хроническим вирусным гепатитом С (всего 161 пациентов). Все участники имели подтвержденный диагноз хронического вирусного гепатита и соответствовали критериям включения.

Контрольная группа состояла из лиц, сопоставимых по полу и возрасту. Набор контрольной группы проводился рандомным методом среди лиц казахской национальности, желающих пройти генетическое обследование.

Критерии включения в контрольную группу:

- Отсутствие в анамнезе хронических вирусных гепатитов В и С подтверждалось путем исследования крови методом ИФА (HBsAg, анти-HCV) и ПЦР (ДНК вируса В и РНК вируса С);
- Принадлежность к казахской национальности устанавливали путем анкетирования и сверки с данными свидетельства о рождении и удостоверения личности респондента в трех поколениях.

Опросник представлял собой анкету для сбора демографической информации о пациенте и его родословной до третьего поколения, включая национальность и место рождения как самого пациента, так и его родителей, бабушек, дедушек, прабабушек и прадедушек. Анкета включала следующие разделы: 1. Данные пациента: Код пациента, дата, ФИО, ИИН, место проживания, дата рождения, национальность. 2.Информация о родителях в 3-х поколениях исследуемого: национальность и место рождения. Также анкета содержала поля для подписи участника исследования, исследователя и даты заполнения. Этот опросник использовался для анализа генеалогии пациента с целью изучения этнического фактора.

Всего для набора лиц в контрольную группу были осмотрены 136 человек. По критериям включения в контрольную группу всего вошли 130 человек.

Определение полиморфизма генов TLR3: выполнялся забор венозной крови у больных с XBГ В и С в гепатоцентрах, у здоровых людей контрольной группы и доставлялся в лабораторию НПЦ.

2.3 Методология исследования для второй и третей задачи

Сопоставление с клинико-лабораторными показателями, а также оценка ассоциации полиморфизмов генов TLR3 с исходом ПВТ ХВГ В и С для прогнозирования уменьшения степени фиброза в казахской этнической группе.

Дизайн исследования продольное описательное. Все результаты анализов больных вносили в ИРК с данных карты индивидуального учета обследованных и больных вирусными гепатитами В и С (формы №30–1/У). Для выполнения данной задачи были анализированы данные объективного осмотра, лабораторных и инструментальных данных до получения ПВТ и после на 24 неделе мониторинга.

Методы исследования были разработаны на основе клинических протоколов диагностики и лечения XBГ В и С.

Исследование включал сбор данных до лечения и на 24 неделе после его начала, с оценкой следующих показателей: эпидемиологический анамнез, объективные данные, биохимический анализ крови, иммуноферментный анализ, полимеразная цепная реакция, эластометрия, молекулярно-генетический анализ.

Общая длительность исследования -1 года: набор пациентов проводился с 1 марта 2020 года по 31 августа 2020 года (в течение полугода), затем пациенты в течение полугода находились под наблюдением (на 24 неделе ПВТ).

2.4 Определение полиморфизмов генов

У всех обследуемых производился забор венозной крови для проведения молекулярно-генетического анализа. Генотипирование выполнено на базе научно-практического центра ЗКМУ имени Марата Оспанова города Актобе, улица Маресьева, 74.

Для выделения геномной ДНК из периферической крови исследуемых использовались наборы реагентов «ДНК-Кровь-М-100» производства компании ООО «ТестГен» (Россия). Принцип работы данного набора основан на обратимом связывании нуклеиновых кислот с поверхностью магнитных частиц. Данный метод обеспечивает высокую чистоту и концентрацию ДНК, что важно для последующего генотипирования. Этапы выделения ДНК включают в себя лизис клеток крови, связывание ДНК с магнитными частицами, несколько этапов промывки и элюции ДНК.

полиморфизмов TLR3 Генотипирование генов (rs5743305, rs5743312, rs5743311, rs1879026, rs3775291) проводилось методом полимеразной цепной реакции (ПЦР) в режиме реального времени на амплификаторе ДТ-прайм (ДНКтехнологии, Россия). Для этого использовались коммерческие наборы реактивов компании ООО «ТестГен» (Россия). ПЦР в реальном времени основана на применении флуоресцентной детекции использованием c разрушаемых олигонуклеотидных зондов. Каждый зонд содержит флуорофор и гаситель, расположенные на противоположных концах молекулы. В исходном состоянии зонд не испускает флуоресценции, так как гаситель поглощает свет, излучаемый флуорофором.

Амплификация ДНК включает три основные фазы:

1. Денатурация — нагрев смеси до высоких температур (около 95°C), при которых двухцепочечная ДНК расплетается, образуя две одноцепочечные молекулы.

- 2. Отжиг праймеров при снижении температуры до 55–65°С праймеры, комплементарные участкам целевой ДНК, связываются с этими участками.
- 3. Элонгация при повышении температуры до 72°C Таq-полимераза достраивает новую цепь ДНК, начиная с праймера.

Для генотипирования использовались сигнальные зонды, метки которых (FAM и HEX) были специфичны для каждого аллеля полиморфизма. Во время амплификации Таq-полимераза разрушает зонд, отделяя флуорофор от гасителя, что приводит к высвобождению флуоресцентного сигнала. Интенсивность флуоресценции напрямую зависит от количества амплифицированного продукта и позволяет определить наличие или отсутствие мутации в образце.

После завершения амплификации проводится температурное плавление (мелтинг-кривая) ампликона и зонда, что позволяет подтвердить точность генотипирования. Этот этап заключается в постепенном повышении температуры и отслеживании изменения флуоресценции по мере диссоциации дуплексов ампликона и зонда. На основании этих данных программное обеспечение амплификатора строит график зависимости флуоресценции от температуры, позволяя точно идентифицировать различные аллели полиморфизмов.

2.5 Статистический анализ данных

Для расчета ряда статистических параметров и исследований "случай-контроль", использующих SNP пользовались помощью калькулятора Gen-Expert http://84.201.145.131/, а также для изучения распространенности генотипов и аллелей изучаемых полиморфизмов у больных XBГ B, C казахской популяции и контрольной группы.

Статистический анализ и визуализация полученных данных проводились с использованием среды для статистических вычислений R 4.3.2 (R Foundation for Statistical Computing, Вена, Австрия).

Описательные статистики представлены в виде наблюдаемого числа наблюдений (относительная частота) для качественных переменных и среднего (± стандартное отклонение) и медианы (1-ый; 3-ий квартили) – для количественных переменных с симметричным распределением, и медианы (1-ый; 3-ий квартили) – для количественных переменных с асимметричным распределением отличным от симметричности выборочного нормального. распределения Для оценки использовался коэффициент асимметрии (критическим считали абсолютное значение коэффициента равное 1,96), для тестирования гипотезы о соответствии выборочного распределения нормальному закону использовался тест Шапиро-Уилка. Для анализа соответствия эмпирического распределения генотипов теоретическому, определяемому равновесием Харди-Вайнберга использовался тест χ^2 .

Для сравнения трех и более групп в отношении количественных переменных использовался тест Краскела-Уоллиса, для сравнения двух групп в отношении количественных переменных использовался тест Манна-Уитни. Для изучения динамики количественных переменных использовался тест Фридмана. Для оценки отличий между группами в отношении динамики количественных показателей использовались линейные смешанные модели с включением термина

взаимодействия между периодом наблюдения и группирующей переменной, зависимые переменные с правосторонней асимметрией выборочного распределения включались в модели после ln-трансформации.

Для сравнения групп в отношении качественных переменных использовались тест χ^2 Пирсона и точный тест Фишера (при минимальном ожидаемом количестве наблюдений в таблице сопряженности <5). При анализе динамики бинарных показателей использовались обобщенные линейные смешанные модели с логистической функцией связи, для анализа отличий между группами в отношении динамики бинарных показателей использовались обобщенные линейные смешанные модели с включением термина взаимодействия между периодом наблюдения и группирующей переменной.

Для сравнения групп в отношении порядковых переменных использовались пропорциональных шансов, при анализе динамики переменных использовались смешанные модели пропорциональных шансов, а для анализа отличий между группами в смешанные модели пропорциональных шансов термина взаимодействия между периодом включением наблюдения группирующей переменной. Различия считались статистически значимыми при p < 0.05. качестве прогностических моделей использовались классификации CART, В качестве метрик качества предсказаний: прогностическая точность, чувствительность, специфичность, прогностическая ценность положительного и отрицательного результатов с соответствующими 95% доверительными интервалами (95% ДИ).

РЕЗУЛЬТАТЫ СОБСТВЕННЫХ ИССЛЕДОВАНИЙ

В исследование было охвачено 291 совершеннолетних людей казахской национальности. Возраст участников исследования был в интервале от 18 до 60 лет. В основную группу вошли 161 пациентов с диагнозом ХВГ В (59), С (102) и 130 здоровых людей контрольной группы.

Результаты анализа распределения частот генотипов гена TLR3 rs5743305, rs5743312, rs1879026, rs3775291.

Полиморфизм rs5743312 генов TLR3 генотип TT встречался чаще у больных с XBГ C, шансов иметь TT генотип был выше в 3,1 раза по сравнению с контрольной группой (р <0,05). Шанс иметь гомозиготный генотип CC был выше в 1,4 раза по сравнению с контролем (р <0,05). Аналогично при XBГ В генотип TT встречался чаще, но статистический значимых различий не обнаружено.

При полиморфизме гена TLR3 rs5743305при XBГ С и В генотипТТ встречался часто (55–62%), шансов иметь ТТ генотип был выше в (1,26–1,73) раза соответственно по сравнению с контрольной группой.

Наиболее часто у больных гепатитом С встречался генотип СТ (47%) и аллель Т (33%) при полиморфизме гена TLR3 rs3775291, и шансов иметь генотип СТ был выше в 1,42 раза. Так же, наиболее часто у больных с ХВГ В регистрируется гетерозиготный генотип СТ (40%) и аллель С (74%) rs3775291 гена TLR3.

У больных с ХВГ С наиболее часто отмечался гомозиготный генотип СС (62%) и аллель С (79%) rs1879026 полиморфизма гена TLR3. При этом шансов иметь генотип СС в 1,24 раза выше в сравнении с показателем контрольной группы

 $(95\% \ CI = 0.73-2.10)$. При XBГ В у больных регистрировался гомозиготный генотип СС (69%) и генотип С (85%), при этом шанс иметь генотип СС в 1,67 раза выше, чем в группе контроля.

Анализ частоты встречаемости полиморфных вариантов гена TLR3 rs5743305, rs 5743312, rs5743311, rs1879026, rs3775291 в группе пациентов с XBГ В и С показал, что гепатиты В и С могут быть ассоциированы в казахской популяции с полиморфизмом гена TLR3 rs5743305, но статистически не значимо. Только при ВГ С полиморфизм гена TLR3 rs 5743312 генотип ТТ превышал в 3,1 раза (р <0,05), гомозиготный генотип СС – в 1,4 раза в сравнении с контрольной группой (р <0,05). На основании полученных результатов эти генотипы могут быть ассоциированы с развитием ХВГ С.

Результаты анализа ассоциации полиморфизма генов TLR3 с клиниколабораторным течением при хронических вирусных гепатитах В и С.

Динамика выраженности печеночных симптомов ХВГ В и С в процессе ПВТ при различных полиморфизмах генов TLR3 rs5743312, TLR3 rs5743305, TLR3 rs3775291, TLR3 rs1879026 была неоднородной. В начале заболевания как при ХВГ В, так и при ХВГ С печёночные признаки регистрировались преимущественно у всех больных в пределах от 73–85%, за исключением у больных с ХВГ В 100%-го наличия симптомов при генотипе TA/AA полиморфизма гена TLR3 rs5743305. У пациентов ХВГ В эффект ПВТ через 24 недели мониторинга наблюдался в минимальных пределах 11,1% с генотипом CA/AA при полиморфизме TLR3 rs1879026 до 39,1% с генотипом СТ/ТТ при полиморфизме генов TLR3 rs5743312. Более эффективной ПВТ оказалась у пациентов ХВГ С в пределах 50–60,5%: при генотипе CA/AA полиморфизма TLR3 rs1879026 (60,5%), CT/ТТ полиморфизма TLR3 rs3775291 (58,8%), генотипе СС полиморфизма TLR3 rs5743312 (55,6%).

Астено-вегетативные симптомы наиболее клинический выраженной проявлялась при ХВГ В генотип ТА/АА полиморфизма гена TLR3 rs5743305 (90,9%). Под влиянием ПВТ они регрессировали в меньшей степени, чем печеночные признаки. У больных с ХВГ В самый минимальный эффект ПВТ выявлен генотип СТ/ТТ полиморфизме генов TLR3 rs5743312 (13%), наибольший – гомозиготный генотип СС полиморфизма генов TLR3 rs5743312 (33,4%), генотип СТ/ТТ полиморфизма TLR3 rs3775291 (33,3%). При ХВГ С наилучший эффект ПВТ отмечен у пациентов с генотипом СА/АА при полиморфизме TLR3 rs1879026 (44,8%), а в остальных случаях характеризовались регрессом астено-вегетативных симптомов в пределах от 30–41,6% в динамике наблюдения.

Внепеченочные признаки поражения печени при ХВГ В проявились у 1/3–1,5 части больных (16,5–38,9%), лишь в большей степени у пациентов с генотипом ТА/АА полиморфизма гена ТLR3 rs5743305 (45,5%). Регресс внепеченочных признаков под влиянием ПВТ было незначительным: от 2,7–9,1%. При ХВГ С внепеченочные признаки клинический были выявлены в пределах 13,3–22,4% случаев независимо от генотипов и полиморфизмов. Клинический эффект ПВТ был неоднозначным: от купирования симптомов в динамике наблюдения на 1,4% (генотип СС полиморфизме генов TLR3 rs5743312) и 5,3% (СА/АА полиморфизма TLR3 rs1879026), отсутствия изменения и наоборот, увеличения количества

больных с внепеченочными признаками на 2,3%–6,7% (СТ/ТТ полиморфизме генов TLR3 rs5743312). Следовательно, ПВТ при ХВГ С практически не влиял на выраженность внепеченочных признаков.

Анализ вирусной нагрузки у пациентов с XBГ В в зависимости от носительства полиморфизма генов TLR3 rs5743312, TLR3 rs5743305, TLR3 rs3775291, TLR3 rs1879026 до ПВТ выявил, что наибольшее количество наблюдаемых с низкой виремией отмечалась при носительстве полиморфизма гена TLR3 rs3775291(CC-25%, CT-8,3%, TT- 33,3%), наименьшее количество – полиморфизма гена TLR3 rs187026 (CC-26,8%). Обращает внимание, что при всех полиморфизмах гена TLR3 высокая и выше линейного диапазона вирусная нагрузка: генотип TT – 100% полиморфизм гена TLR3 rs5743312, генотип AA – 100% полиморфизм гена TLR3 rs5743305, генотип TA-89,5%, генотип -CA/AA-100% при полиморфизме TLR3 rs1879026. Так же при полиморфизме гена TLR3 rs3775291 генотип CT вирусная нагрузка составляет 91,7%. Возможно, носители этих генотипов и полиморфизмов гена TLR3, более подвержены быстрому прогрессированию инфекционного процесса и развитию осложнений.

В сравнении с ХВГ В при ХВГ С более медленное нарастание вирусной нагрузки в крови. Наибольшее количество пациентов с низкой виремией отмечено у носителей полиморфизма гена TLR3 rs3775291: генотип TT- 50%, генотип СС-40,9%, гетерозиготный генотип СТ-35,4%. Одинаковые количества обследованных с низкой виремией у носителей полиморфизма гена TLR3 rs5743312: СС-41,7%, СТ-34,8%, ТТ-28,6%, и полиморфизма гена TLR3 rs5743305: ТА-43,2%, ТТ-30,3%, АА-22,2%. Наименьшее количество пациентов с низкой виремией при полиморфизме гена TLR3 rs1879026: СА/АА 44,7%, СС-35,9%. Наибольшее количество больных с высокой вирусной нагрузкой с полиморфизмом гена TLR3 rs574305 генотип АА-77,8%; с меньшим количеством – полиморфизм гена TLR3 rs377291 генотип TT (50%), полиморфизм гена TLR3 rs1879026 генотип СА/АА (44,7%).

ПВТ при ХВГ В и С была эффективной при интерпретации лабораторных показателей. Снижение показателей холестаза: статистически значимое снижение уровня ЩФ, ГГТП обнаружено при ХВГ В и С полиморфизме TLR3 rs3775291 гомозигот СС при (p=0,001, p <0,001 соответственно), rs1879026 (p=0,001 и <0,001, соответственно), аллеля Т с ХВГ С (p<0,001). Среди пациентов с гепатитом С была отмечена статистически значимая ассоциация динамики ГГТП с носительством аллеля Т (p <0,001). У пациентов с ХВГ В и С независимо от генотипа наблюдалось снижение активности печеночно-клеточных ферментов АЛТ, АСТ. Статистически значимое снижение уровня АЛТ отмечалось при полиморфизмах гена TLR3 генотип СС rs5743312 TLR3 (p <0,001), генотип ТТ rs5743305(p <0,001), TLR3 rs3775291 СС (p <0,001). Статистически значимое снижение уровня АСТ у больных с гепатитами В и С генотипом ТТ rs5743305 TLR3 (p <0,001 и 0,002, соответственно), генотипом СС rs3775291 TLR3 (p <0,001 и 0,001, соответственно).

Результаты влияния полиморфизмов генов TLR3 в исходе ПВТ ХВГ В и С для прогнозирования уменьшения степени фиброза.

Среди пациентов XBГ С при полиморфизме rs5743312 гена TLR3генотип TT

был ассоциирован с наиболее выраженными изменениями в динамике (р <0,001): снижение количество больных с фиброзом в два раза с 57,1% до 28,6%, а при генотипах СС/СТ констатировали незначительное улучшение, причем цирроз печени регрессировал с 21,7% до 8,7%. При ХВГ В наиболее значительное улучшение после ПВТ наблюдалось у пациентов с генотипом СС, где доля пациентов с переходом на наименьшую степень фиброза достигла 83,3% случаев. А у больных с генотипом ТТ улучшались показатели регресса фиброза до 75%, лишь 25% пациентов остались без изменений. Наименьший эффект ПВТ отмечен у пациентов с генотипом СТ, которые оказались наиболее устойчивы к лечению, поскольку процент цирроза не изменился и составил 5.3% до и после лечения.

Изучение полученных данных полиморфизма rs5743305 гена TLR3 с генотипом AA полиморфизма rs5743305 гена TLR3 при XBГ В 100% был обнаружен сформированный фиброз печени. Уменьшение фиброза наблюдалось среди гомозигот ТТ (р <0,001) с переходом на наименьшую степень фиброзирования до 80,1% и уменьшения цирроза с 21,6% до 13,5% случаев. Среди пациентов с гепатитом С наилучшие результаты показали пациенты с генотипом ТА, у которых существенно снизилась доля пациентов с циррозом до 8,1%, фиброз высокой степени купировался в наименьшую степень. Пациенты с генотипом AA характеризовались улучшением состояния в положительную сторону, с исчезновением циррозов и минимальными изменениями степени фиброза до и после лечения.

Среди пациентов с ХВГ В значимым уменьшением выраженности фиброза печени характеризовались носители генотипов СС, СТ (р <0,001), а также генотипа ТТ (р=0,016). Улучшение состояния в виде уменьшения степени фиброза отмечалось у 83,3% пациентов с генотипом СТ и 75% - генотипом СС. Обладатели генотипа ТТ при полиморфизме rs3775291 гена TLR3 характеризовались исчезновением фиброза у 33,3% и переходом с фиброза 2 в фиброз 1 у 33,3% больных.

Среди пациентов с гепатитом С статистически значимое снижение выраженности фиброза отмечено у пациентов с генотипами СС и СТ (р <0,001). У гомозигот ТТ не были статистически значимых изменений (р=0,114) в динамике проведения ПВТ, что свидетельствует о толерантности к противовирусным препаратам (софосбувир+даклатасвиру). Анализ пациентов с гепатитом С показал, что для генотипа СС процент пациентов без фиброза возрос с 47,7% до 59,1% случаев после лечения, генотипа СТ - с 29,2% до 41,7% больных, тогда как для генотипа ТТ этот показатель оставался стабильным на уровне 60% случаев.

При полиморфизме rs1879026 гена TLR3 наибольшее формирование фибротических изменений отмечено у пациентов с генотипом CA/AA при гепатите В и составило до 89,9%. Для генотипа СС было зарегистрировано увеличение частоты пациентов без фиброза с 26,8% до 36,6% по окончании терапии. Примечательно, что процент пациентов с циррозом снизился с 14,6% до 9,8% случаев. Цирроз печени у людей с генотипом CA/AA уменьшался почти в 2 раза (с 38,9% до 16,7%), причем доля пациентов без фиброза возросла с 11,1% до 22,2% случаев. В группе больных ХВГ С с генотипом СС под влиянием ПВТ увеличилась

доля пациентов без фиброза с 42,2% до 51,6%, с генотипом CA/AA – с 36,8% до 50%.

Нами разработано дерево классификации пациентов с ХВГ В и С для прогнозирования уменьшения степени фиброза на 24 неделе мониторинга.

Наибольшее уменьшение степени фиброза после 24 недель наблюдения отмечено у пациентов с ХВГ В при полиморфизме rs3775291 генотипа ТТ (100% улучшения), затем следует генотип СТ с rs1879026 (75% улучшения) и генотип ТТ с rs5743312 (67,5% улучшения). Наименьшее уменьшение зафиксировано у пациентов с вариантом СС rs5743305 (42.9% улучшения) и ТА/АА того же полиморфизма (60% улучшения).

При ХВГ С при полиморфизме rs3775291 гена TLR3 генотип ТТ демонстрирует наибольшую вероятность улучшения (88,6% пациентов с уменьшением степени фиброза). В последующих разветвлениях по полиморфизму rs5743312гена TLR3 пациенты с генотипами СТ и ТТ показывают улучшение в 85,7%, в то время как геноттипы СС и ТТ демонстрируют улучшение в 71% случаев. Наименьший процент улучшения (46,2%) наблюдается у пациентов с вариантом ТА по генотипу rs5743305.

ЗАКЛЮЧЕНИЕ

Таким образом, на основании полученных результатов проведенного нами исследования можно сделать следующие ВЫВОДЫ:

- 1. Впервые проведен анализ распределения частот генотипов генов TLR3 rs5743305, rs5743312, rs1879026, rs3775291, ассоциированных с хроническими вирусными гепатитами В и С в казахской этнической группе; У больных ВГ С генотип ТТ полиморфизма гена TLR3 rs 5743312 превышал в 3,1 раза (р <0,05), генотип СС − в 1,4 раза в сравнении с контрольной группой (р <0,05). Возможным маркером, ассоциированным с развитием ХВГ С в казахской этнической группе, является наличие генотипа ТТ (р <0,05) rs5743312 полиморфизма гена TLR3.
- 2. Клинические проявления ХВГ В (печеночные 100%, астеновегететивные 90,9%, внепеченочные 45,5%) обнаружены у больных с наличием генотипа ТА/АА TLR3 rs5743305 гена. У больных с ХВГ В регресс печёночных симптомов выявлен при наличии генотипа СТ/ТТ (39,1%), астено-вегетативных генотипа СС (33,4%) TLR3 rs5743312 и генотипа СТ/ТТ (33,3%) TLR3 rs3775291. У пациентов ХВГ С отмечался более выраженный регресс клинических проявлений при генотипе СА/АА TLR3 rs1879026: регресс печеночных признаков 60,5%, астеновегетативных 44,8%.
- 3. Проведенная противовирусная терапия у больных с XBГ В и С, имеющих генотип СС rs3775291, rs1879026 гена TLR3, вызывала снижение уровней ЩФ(р <0,001), ГГТП (р <0,001); АЛТ при наличии генотипа СС rs 5743312 (р <0,001), генотипа ТТ rs5743305 (р<0,001), генотипа СС rs 3775291 гена TLR3 (р <0,001); АСТ при наличии генотипа ТТ rs5743305 (р <0,001), генотипа СС rs3775291 гена TLR3 (р<0,001).

- 4. У пациентов с ХВГ В, имеющих генотип ТТ TLR3 rs3775291, генотип СТ TLR3 rs1879026 и генотип ТТ TLR3 rs5743312, отмечено достоверное уменьшение степени фиброза на 24 неделе мониторинга на 100%, 75% и 67,5% соответственно. У пациентов с ХВГ С при наличии генотипа ТТ TLR3 rs3775291 и генотипа СТ/ТТ TLR3 rs5743312 степень фиброза снизилась на 88,6% и 85,7% соответственно, а при генотипах СС и ТТ TLR3 rs5743305 на 71% случаев.
- 5. Основываясь на результатах генотипирования, разработано дерево классификации пациентов с XBГ: при гепатите В наибольший регресс степени фиброза отмечался при генотипе ТТ полиморфизма TLR3 rs3775291, наименьший СС TLR3 rs5743305; при гепатите С наибольший генотипе ТТ TLR3 rs3775291, наименьший генотипе ТА TLR3 rs5743305. Это служит для прогнозирования уменьшения степени фиброза с целью персонализированного подхода терапии.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

Выявленные распределения частот генотипов генов TLR3 rs5743305, rs 5743312, rs1879026, rs3775291, ассоциированных с XBГ В и С в казахской этнической группе, дополняют сведения об особенностях генетического аспекта заболевания и помогут прогнозировать течение болезни у конкретного пациента;

Проведение генетического тестирования на полиморфизмы генов TLR3 rs5743305, TLR3rs5743312, TLR3rs1879026, TLR3rs3775291 у пациентов с XBГ В и С в казахской этнической группе перед началом лечения позволит идентифицировать пациентов с повышенным риском развития фиброза печени и адаптировать стратегию лечения и мониторинга в соответствии с их генетическим профилем;

Интеграция результатов генотипирования TLR3 rs5743305, rs5743312, rs1879026, rs3775291 в казахской этнической группе в клиническую практику клинической фармакологии, гастроэнтерологии, инфекционных болезней будут способствовать развитию персонализированного мониторинга и управления течением ХВГ В и С с учетом индивидуального риска осложнений.

Полученные научно-обоснованные выводы и значения могут использоваться для учебного процесса в университете.